Sách giáo khoa Y Dược học: Analytical Techniques for Biopharmaceutical Development (Kỹ thuật phân tích nhằm phát triển Dược phẩm sinh học)
ROBERTO RODRIGUEZ-DIAZ - TIM WEHR - STEPHEN TUCK
ANALYTICAL TECHNIQUES FOR BIOPHARMACEUTICAL DEVELOPMENT
(KỸ THUẬT PHÂN TÍCH NHẰM PHÁT TRIỂN DƯỢC PHẨM SINH HỌC)
PUBLISHER: MARCEL DEKKER (2005)
THÔNG TIN CHUNG:
Tên sách: Analytical Techniques for Biopharmaceutical Development (tạm dịch: Kỹ thuật phân tích nhằm phát triển Dược phẩm sinh học).
Tác giả: Roberto Rodriguez-Diaz - Tim Wehr - Stephen Tuck.
NXB: Marcel Dekker (2005).
Thông số: 401 trang, 14 chương chính.
Dược phẩm có nguồn gốc sinh học hiện nay đang là hướng phát triển mới trong ngành công nghiệp dược phẩm, với tiềm năng lớn trong việc điều trị, an toàn, thân thiện, ít gây tác dụng phụ hơn so với dược phẩm tổng hợp. Cuốn sách dài hơn 400 trang này sẽ cung cấp cho độc giả, đặc biệt là các nhà nghiên cứu trong lĩnh vực công nghệ sinh học những kiến thức, kinh nghiệm trong việc phân tích nhằm phát triển các loại dược phẩm sinh học trong tương lai...
INTRODUCTION (GIỚI THIỆU):
Before the days of mass literacy, medicine was more art than science, and people recognized a pharmacy by the four traditional colored bottles that represent earth,fire, air, and water. Medicine has come a long way since the days of the apothecary with its impressive collection of powders and bottles; drugs today are highly regulated and must comply with standards set by the U.S., Europe, Japan, and other countries. A drug must be shown to be efficacious and meet rigorous standards of purity, composition, and potency before being approved for use in the patient population. These regulations provide confidence to the patient that a prescribed medicine will achieve its therapeutic goal. Whether in the form of a pill, a capsule, an injection, a tablespoon of syrup, or an inhaler, analytical methods ensure the identity, purity, potency, and ultimately the performance of these drugs.
Analytical methods are important not only in the development and manufacture of commercial biopharmaceutical drugs, they also play a vital role in the whole drug development life cycle. Drug discovery and preclinical research require development and application of analytical methodologies to support identification, quantitation, and characterization of lead molecules. It is difficult to perform a comparative potency assay on lead molecules if one does not know how much of each is going into the assay or how pure the molecule is. Analytical methods are typically developed, qualified, and validated in step with the clinical phase of the molecule. Techniques used during discovery and preclinical development will be qualified for basic performance. When the drug is approaching early human clinical trials, and compliance to regulations becomes the order of the day, the analytical scientist begins developing assays that International Conference on Harmonization (ICH) guidelines define as “appropriate for their intended applications.” Analytical methods will be required for characterizing the protein’s physical-chemical and biological properties, developing stable formulations, evaluating real-time and accelerated stability, process development, process validation, manufacturing, and quality control.
The objective of this book is to provide both an overview and practical uses of the techniques available to analytical scientists involved in the development and application of methods for protein-based biopharmaceutical drugs. The emphasis is on considering the analytical method in terms of the stage of the development process and its appropriateness for the intended application. The availability of techniques will reveal whether or not the analytical problem has a potential solution. Then will come the question of whether or not the technique is a truly appropriate solution. The theoretical considerations behind choosing the technique may be solid. However, the practicality of the method may not hold up to inspection.
TABLE OF CONTENTS (MỤC LỤC):
Contents
About the Editors
Contributors
1. Analytical Techniques for Biopharmaceutical Development
Stephen Tuck
2. Introduction to the Development of Biopharmaceuticals
Roberto Rodriguez-Diaz
3. Protein Assay
Stephen Tuck and Rowena Ng
4. Use of Reversed-Phase Liquid Chromatography in Biopharmaceutical Development
Tim Wehr
5. Practical Strategies for Protein Contaminant Detection by High-Performance Ion-Exchange Chromatography
Pete Gagnon
6. Practical Strategies for Protein Contaminant Detection by High-Performance Hydrophobic Interaction Chromatography
Pete Gagnon
7. Use of Size Exclusion Chromatography in Biopharmaceutical Development
Tim Wehr and Roberto Rodriguez-Diaz
8. Slab Gel Electrophoresis for Protein Analysis
David E. Garfin
9. Capillary Electrophoresis of Biopharmaceutical Proteins
Roberto Rodriguez-Diaz, Stephen Tuck, Rowena Ng, Fiona Haycock, Tim Wehr, and Mingde Zhu
10. Mass Spectrometry for Biopharmaceutical Development
Alain Balland and Claudia Jochheim
11. Analytical Techniques for Biopharmaceutical Development — ELISA
Joanne Rose Layshock
12. Applications of NMR Spectroscopy in Biopharmaceutical Product Development
Yung-Hsiang Kao, Ping Wong, and Martin Vanderlaan
13. Microcalorimetric Approaches to Biopharmaceutical Development
Richard L. Remmele, Jr.
14. Vibrational Spectroscopy in Bioprocess Monitoring
Emil W. Ciurczak
REFERENCES (TÀI LIỆU THAM KHẢO):
1. Sivakesava, S., Irudayaraj, J., and Demirci, A., J. Ind. Microbiol. Biotech., 26,185–190 (2001).
2. Sivakesava, S., Irudayaraj, J., and Demirci, A., Process Biochem., 37,371–378 (2001).
3. Shaw, A. D., Kaderbhal, N., Jones, A., Woodward, A. M., Goodcare, R., Rowland, J. J., and Kell, D. B., Appl. Spectrosc., 53 (11), 1419–1428 (1999).
4. Schuster, K. C., Mertens, F., and Gapes, J. R., Vib. Spectrosc., 19 (2), 467–477 (1999).
5. Weldon, M. K., M. M., Harris, A. B., and Stoll, J. K., J. Lipid Res., 39,1896–1899 (1998).
6. Maquelin, K., Choo-Smith, L. P., van Vreeswijk, T., Endtz, H. P., Bennett, R., Bru- ining, H. A., and Puppels, G. J., Anal. Chem., 72,12–19 (2000).
7. Marose, S., Lindemann, C., Ulber, R., and Scheper, T., Trends Biotechnol., 17 (1), 30–34 (1999).
8. Ehntholt, D. J., Tayor, R. F., and Miseo, E. V., ISA Trans., 31 (4), 67–73 (1992).
9. Doak, D. L., The use of FTIR-ATR spectroscopy for on-line monitoring and control of bioprocesses, 218 pp. Avail: UMI, Order No. DA9982862 From: Diss. Abstr. Int., B 2001,61 (8), 4277 (2000).
10. Doak, D. L. And Phillips, J. A., Biotechnol. Prog., 15 (3), 529–539 (1999).
11. Gordon, S. H., Green, R. V., Wheeler, B. C., and James, C., Biotechnol. Adv., 11 (3), 665–675 (1993).
12. Fayolle, P., Picque, D., Perret, B., Latrille, E., and Corrieu, G., Appl. Spectrosc., 50 (10), 1325–1330 (1996).
13. Bellon, V., Sensor. Actuat., B, 12,57–64 (1993).
14. Fayolle, P., Picque, D., and Corrieu, G., Vib. Spectrosc., 14 (2), 247–252 (1997).
15. Fayolle, P., Picque, D., and Corrieu, G., Food Control, 11 (4), 291–296 (2000).
16. Piqué, D., Lefier, D., Grappin, R., and Corrieu, G., Anal. Chim. Acta, 279 (1), 67–72 (1993).
17. Kansiz, M., Gapes, J. R., McNaughton, D., Lendl, B., and Schuster, K. C., Anal. Chim. Acta, 438 (1–2), 175–186 (2001).
18. Mosheky, Z. A., Melling, P. J., and Thomson, M. A., Spectroscopy 16 (6), 15–18,20 (2001).
19. Crowley, J., McCarthy, B., Nunn, N. S., Harvey, L. M., and McNeil, B., Biotechnol. Lett., 22 (24), 1907–1912 (2000).
20. Skinner, K. E., J. Am. Soc. Brew. Chem., 54 (2), 71–75 (1996).
21. Pollard, D. J., Buccino, R., Conners, N. C., Kirschner, T. F., Olewinski, R. C., Saini, K., and Salmon, P. M., Bioprocess Biosyst. Eng., 24 (1), 13–14 (2001).
22. Schuster, K. C., Mertens, F., and Gapes, J. R., Vib. Spectrosc., 19,467–477 (1999).
23. Desgranges, C., Georges, M., Vergoignan, C., and Durand, A., Appl. Microbiol. Biotechnol., 35 (2), 206–209 (1991).
24. Morrow, R. C. And Crabb, T. M., Adv. Space Res., 26,289–298 (2000).
25. Cheung, H. Y., Sun, S. Q., Sreedhar, B., Ching, W. M., and Tanner, P. A., J. Appl. Microbiol., 89 (1), 100–106 (2000).
26. McGovern, A. C., Ernill, R., Kara, B. V., Kell, D. B., and Goodacre, R., J. Biotechnol., 72 (3), 157–167 (1999).
27. Acha, V., Meurens, M., Naveau, H., and Agathos, S. N., Biotechnol. Bioeng., 68 (5), 473–487 (2000).
28. Shaw, A. D., Winson, M. K., Woodward, A. M., McGovern, A. C., Davey-Kaderbhai, N., Broadhurst, D., Gilbert, R. J., Taylor, E. M., Goodacre, D. B., Alsberg, B. K., and Rowland, J. J., Adv. Biochem. Eng. Biotechnol., 66,83–113 (2000).
29. Sonnleitner, B., Adv. Biochem. Eng. Biotechnol., 66,1–64 (2000).
30. Hall, J. W., M. B., McNeil, B., Rollins, M. J., Draper, I., Thompson, B. G., and Macaloney, G., Appl. Spectrosc., 50 102–108 (1996).
31. Varadi, M., Toth, A., and Rezessy, J., in Making Light Work: Advanced Near- Infrared Spectroscopy International Conference for Near-Infrared Spectroscopy, Eds: Murray, I. And Cowe, I. A., Meeting Date 1991,382–386. VCH, Weinheim, Germany (1992).
32. Forbes, R. A., Luo, M. Z., and Smith, D. R., J. Pharm. Biomed. Anal., 25,239–256 (2001).
33. Chung, H., Arnold, M. A., Rhiel, M., and Murhammer, D. W., Appl. Spectrosc., 50 (2), 270–276 (1996).
34. Yano, T., Aimi, T., Nakano, Y., and Tamai, M., J. Ferment. Bioeng., 84 (5), 461–465 (1997).
35. Vaccari, G., Dosi, E., Campi, A. L., Gonzolez-Vera, A., Matteuzzi, D., and Manto- vani, G., Biotechnol. Bioeng., 43 (10), 913–917 (1994).
36. Macaloney, G., Hall, J. W., Rollins, M. J., Draper, I., Anderson, K. B., Preston, J., Thompson, B. G., and McNeil, B., Bioprocess Eng., 17,157–167 (1997).
37. Schmidt, S., Kircher, M., Kasala, J., and Locaj, J., Bioprocess. Eng., 19 (1), 67–70 (1998).
38. Arnold, S. A., Crowley, J., Vaidyanathan, S., Matheson, L., Mohan, P., Hall, J., Harvey, L. M., and Mcneil, B., Enzyme Microbial Technol., 27 (9), 691–697 (2000).
39. Macaloney, G., Hall, J. W., Rollins, M. J., Draper, I., Thompson, B. G., and McNeil, B., Biotechnol. Tech., 8 (4), 281–286 (1994).
40. Vaidyanathan, S., McNeil, B., and Macaloney, G., Analyst, 124 (2), 157–162 (1999).
41. Suehara, K. I., Nakano, Y., and Yano, T., J. Near-Infrared Spectrosc., 6 (1–4), 273–277 (1998).
42. Kasprow, R. P., Lange, A. J., and Kirwan, D. J., Biotechnol. Prog., 14 (2), 318–325 (1998).
43. Hammond, S. V. And Brookes, I. K., Near infrared spectroscopy — a powerful technique for at-line and on-line analysis of fermentations, Harnessing Biotechnol- ogy for the 21st Century: Proceedings of the 9th International Biotechnology Symposium Exposition, Eds: Ladisch, M. R. And Bose, A., pp. 325–333. American Chemical Society, Washington, D. C. (1992).
44. Vaidyanathan, S., Arnold, S., Matheson, L., Mohan, P., McNeil, B., and Harvey, L. M., Biotechnol. Bioeng., 74 (5), 376–388 (2001).
45. Dosi, E., Vaccari, G., Campi, A. L., and Mantovani, G., Near-Infrared Spectroscopy Future Waves: Proceedings of the 7th International Conference for Near-Infrared Spectroscopy, Eds: Davies, Anthony, M. C. And Williams, P. C. (1996), Meeting Date 1995, pp. 249–254. NIR Publications, Chichester, UK. (1997).
46. Cavinato, A. G., Mayes, D. M., Ge, Z., and Callis, J. B., Proceedings of Frontiers in Bioprocessing 2, Meeting Date 1990, pp. 90–98. Eds: Todd, P., Sikdar, S. K., and Bier, M. American Chemical Society, Washington, D. C. (1992).
47. Yeung, K. S. Y., Hoare, M., Thornhill, N. F., Williams, T., and Vaghjiani, J. D., Bio- technol. Bioeng., (63) 6,684–693 (1999).
48. Lennox, B., Montague, G. A., Hiden, H. G., Kornfeld, G., and Goulding, P. R., Bio- technol. Bioeng., 74: 125–135 (2001).
49. Crowley, J., A. S., Harvey, L. M., and McNeil B., Eur. Pharm. Rev., 5 (3), 134–138 (2000).
50. Arnold, S. A., Harvey, L. M., McNeil, B., and Hall, J. W., Biopharm. Int., 15 (11), 26–34 (2002).
51. Arnold, S. A., Harvey, L. M., McNeil, B., and Hall, J. W., Biopharm. Int., 16 (1), 47–49 (2003).
52. Hagman, A. And Sivertsson, P., Process Contr. Qual., 11 (2), 125–128 (1998).
53. Riley, M. R., Arnold, M. A., Murhammer, D. W., Walls, E. L., and DelaCruz, N., Biotechnol. Prog., 14 (3), 527–533 (1998).
Download Ebook: ANALYTICAL TECHNIQUES FOR BIOPHARMACEUTICAL DEVELOPMENT
================================
Nhận xét
Đăng nhận xét