L.A. LEVIN, F.E. NILSSON, J.V. HOEVE, S.M.W WU
ADLER'S PHYSIOLOGY OF THE EYE ELEVENTH EDITION
(SINH LÝ HỌC CỦA MẮT - BẢN 11)
PUBLISHER: ELSEVIER HEALTH SCIENCES (2011)
THÔNG TIN CHUNG:
Tên sách: Adler's Physiology of The Eye - Eleventh Edition (tạm dịch: Sinh lý học của mắt - Bản 11)
Tác giả: L.A. Levin, F.E. Nilsson, J.V. Hoeve, S.M.W Wu
NXB: Elsevier Health Sciences
Thông số: 808 trang, 11 chương chính
Nội dung cuốn sách sẽ tập trung trình bày một cách chi tiết về sinh lý học của mắt, từ cấu trúc giải phẫu cho tới cơ chế thu nhận hình ảnh, những tật về mắt thường gặp ở con người. Đây sẽ là nguồn kiến thức nhãn khoa hữu ích cho những người học tập, nghiên cứu cũng như các y bác sĩ trong chuyên ngành nhãn khoa....
CONTENTS (MỤC LỤC):
Preface
List of Contributors
Acknowledgements
Dedication
Section 1 - Focusing of an image on the retina
Section 2 - Physiology of optical media
Section 3 - Direction of gaze
Section 4 - Nutrition of the eye
Section 5 - Protection of the eye
Section 6 - Photoreception
Section 7 - Visual processing in the retina
Section 8 - Non-perceptive vision
Section 9 - Visual processing in the brain
Section 10 - Visual perception
Section 11 - Development and deprivation of vision
Index
REFERENCES (TÀI LIỆU THAM KHẢO):
1. Roorda A. Wavefront customized visual correction. In: Krueger RR, Applegate RA, MacRae SM, eds The quest for supervision II, Vol. 2.2004, Thorofare, NJ: SLACK Incorporated, 2004 9–17.
2. Ligabue EA, Giordano C. Assessing visual quality with the point spread function using the NIDEK OPD-Scan II. J Refract Surg, 2009; 25 (1 Suppl): S104–S109.
3. Logean E, Dalimier E, Dainty C. Measured double-pass intensity point-spread function after adaptive optics correction of ocular aberrations. Opt Express 2008; 16 (22): 17348–17357.
4. Ijspeert JK, Van Den Berg TJTP, Spekreijse H. An improved mathematical description of the foveal visual point spread function with parameters for age, pupil size and pigmentation. Vision Res 1993; 33 (1): 15–20.
5. Deeley RJ, Drasdo N, Charman WN. A simple parametric model of the human ocular modulation transfer function. Ophthalmic Physiol Opt 1991; 11 (1): 91–93.
6. Charman WN. Wavefront aberration of the eye: A review. Optom Vis Sci 1991; 68 (8): 574–583.
7. Walsh G, Charman WN. Variation in ocular modulation and phase transfer functions with grating orientation. Ophthalmic Physiol Opt 1992; 12 (3): 365–369.
8. Anderson SJ, Mullen KT, Hess RF. Human peripheral spatial resolution for achromatic and chromatic stimuli: Limits imposed by optical and retinal factors. J Physiol 1991; 442: 47–64.
9. Williams DR, Coletta NJ. Cone spacing and the visual resolution limit. J Opt Soc Am A 1987; 4 (8): 1514–1523.
10. Hirsch J, Miller WH. Does cone positional disorder limit resolution? J Opt Soc Am A 1987; 4 (8): 1481–1492.
11. Artal P, Chen L, Fernandez EJ et al. Adaptive optics for vision: The eye’s adaptation to point spread function. J Refract Surg 2003; 19 (5): S585–S587.
12. Sommerfeld A. Mathematische Theorie der Diffraction. Mathematische Annalen 1896; 47 (2–3): 317–374.
13. McLellan JS, Prieto PM, Marcos S et al. Effects of interactions among wave aberrations on optical image quality. Vision Res 2006; 46 (18): 3009–3016.
14. Schwiegerling J. Theoretical limits to visual performance. Surv Ophthalmol 2000; 45 (2): 139–146.
15. Strang NC, Atchison DA, Woods RL. Effects of defocus and pupil size on human contrast sensitivity. Ophthalmic Physiol Opt 1999; 19 (5): 415–426.
16. Longhurst R. Geometrical and physical optics, 2nd edn. London: Longmans, 1968.
17. Stiles WS, Crawford B. The luminous efficiency of rays entering the pupil at different points. Proc R Soc Lond B Biol Sci 1933; 112: 428–450.
18. Seong K, Greivenkamp JE. Chromatic aberration measurement for transmission interferometric testing. Appl Opt 2008; 47 (35): 6508–6511.
19. Hemlholtz H. Popular scientific lectures. New York: Dover Publications, Inc., 1962.
20. Liang J, Grimm B, Goelz S et al. Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor. J Opt Soc Am A Opt Image Sci Vis 1994; 11 (7): 1949–1957.
21. Platt B, Shack R. Lenticular Hartmann screen. Opt Sci Center Newsl 1971; 5: 15–16.
22. Artal P, Guirao A, Berrio E et al. Compensation of corneal aberrations by the internal optics in the human eye. J Vis 2001; 1 (1): 1–8.
23. Preussner PR. The practicality of wavefront correction in ophthalmology. Klin Monatsbl Augenheilkd 2004; 221 (6): 456–463.
24. Hitzenberger C, Mengedoht K, Fercher AF. Laser optic measurements of the axial length of the eye. Fortschr Ophthalmol 1989; 86 (2): 159–161.
25. Thibos LN, Cheng X, Bradley A. Design principles and limitations of wave-front guided contact lenses. Eye Contact Lens 2003 29 (1 Suppl): S167–S170; Discussion S190–1, S192–4.
26. Koh S, Maeda N. Wavefront sensing and the dynamics of tear film. Cornea 2007; 26 (9 Suppl 1): S41–S45.
27. Maeda N, Fujikado T, Kuroda T et al. Wavefront aberrations measured with HartmannShack sensor in patients with keratoconus. Ophthalmology 2002; 109 (11): 1996–2003.
28. Rocha KM, Nose W, Bottos K et al. Higher-order aberrations of age-related cataract. J Cataract Refract Surg 2007; 33 (8): 1442–1446.
29. Tscherning M. Die monochromatischen aberrationen des menschlichen. Auges Z Psychol Physiol Sinn 1894; 6: 456–471.
30. Howland B. Use of crossed cylinder lens in photographic lens evaluation. Appl Op 1960; 7: 1587–1588.
31. Howland HC, Howland B. A subjective method for the measurement of monochromatic aberrations of the eye. J Opt Soc Am 1977; 67 (11): 1508–1518.
32. Mirshahi A, Buhren J, Gerhardt D et al. In vivo and in vitro repeatability of HartmannShack aberrometry. J Cataract Refract Surg 2003; 29 (12): 2295–2301.
33. Born M, Wolf E. Principles of optics, 7th edn. Cambridge, UK: Cambridge University Press, 1999.
34. Rocha KM, Vabre L, Harms F et al. Effects of Zernike wavefront aberrations on visual acuity measured using electromagnetic adaptive optics technology. J Refract Surg 2007; 23 (9): 953–959.
35. Dai GM. Comparison of wavefront reconstructions with Zernike polynomials and Fourier transforms. J Refract Surg 2006; 22 (9): 943–948.
36. Yoon G, Pantanelli S, MacRae S. Comparison of Zernike and Fourier wavefront reconstruction algorithms in representing corneal aberration of normal and abnormal eyes. J Refract Surg 2008; 24 (6): 582–590.
37. Dai GM, Mahajan VN. Zernike annular polynomials and atmospheric turbulence. J Opt Soc Am A Opt Image Sci Vis 2007; 24 (1): 139–155.
38. Dai GM. Wavefront expansion basis functions and their relationships. J Opt Soc Am A Opt Image Sci Vis 2006; 23 (7): 1657–1668.
39. Thibos LN, Applegate RA, Schwiegerling JT et al. Standards for reporting the optical aberrations of eyes. J Refract Surg 2002; 18 (5): S652–S660.
40. Williams D, ed. How far can we extend the limits of vision? Vol. 2. Thorofare, NJ: SLACK Incorporated, 2004: 19–38.
41. Sanchez MJ, Mannsfeld A, Borkensein AF et al. Wavefront analysis in ophthalmologic diagnostics]. Ophthalmologe 2008; 105 (9): 818–824.
42. Mrochen M, Bueeler M, Donitzky C et al. Optical ray tracing for the calculation of optimized corneal ablation profiles in refractive treatment planning. J Refract Surg 2008; 24 (4): S446–S451.
43. MacRae S, Fujieda M. Slit skiascopic-guided ablation using the Nidek laser. J Refract Surg 2000; 16 (5): S576–S580.
44. Perez-Straziota CE, Randleman JB, Stulting RD. Objective and subjective preoperative refraction techniques for wavefront-optimized and wavefront-guided laser in situ keratomileusis. J Cataract Refract Surg 2009; 35 (2): 256–259.
45. Yoon GY, Williams DR. Visual performance after correcting the monochromatic and chromatic aberrations of the eye. J Opt Soc Am A Opt Image Sci Vis 2002; 19 (2): 266–275.
46. McGraw P, Winn B, Whitaker D. Reliability of the Snellen chart. Br Med J 1995; 310 (6993): 1481–1482.
47. Gibson RA, Sanderson HF. Observer variation in ophthalmology. Br J Ophthalmol 1980; 64 (6): 457–460.
48. Netto MV, Dupps W, Jr., Wilson SE. Wavefront-guided ablation: Evidence for efficacy compared to traditional ablation. Am J Ophthalmol 2006; 141 (2): 360–368.
49. Randleman JB, Perez-Straziota CE, Hu MH et al. Higher-order aberrations after wavefront-optimized photorefractive keratectomy and laser in situ keratomileusis. J Cataract Refract Surg 2009; 35 (2): 260–264.
50. Castanera J, Serra A, Rios C. Wavefront-guided ablation with Bausch and Lomb Zyoptix for retreatments after laser in situ keratomileusis for myopia. J Refract Surg 2004; 20 (5): 439–443.
51. Courville CB, Smolek MK, Klyce SD. Contribution of the ocular surface to visual optics. Exp Eye Res 2004; 78 (3): 417–425.
52. Montes-Mico R, Caliz A, Alio JL. Wavefront analysis of higher order aberrations in dry eye patients. J Refract Surg 2004; 20 (3): 243–247.
53. He JC, Burns SA, Marcos S. Monochromatic aberrations in the accommodated human eye. Vision Res 2000; 40 (1): 41–48.
54. Artal P, Fernandez EJ, Manzanera S. Are optical aberrations during accommodation a significant problem for refractive surgery? J Refract Surg 2002; 18 (5): S563–S566.
55. Lopez-Gil N, Iglesias I, Artal P. Retinal image quality in the human eye as a function of the accommodation. Vision Res 1998; 38 (19): 2897–2907.
56. Atchison DA, Collins MJ, Wildsoet CF et al. Measurement of monochromatic ocular aberrations of human eyes as a function of accommodation by the Howland aberroscope technique. Vision Res 1995; 35 (3): 313–323.
57. Iida Y, Shimizu K, Ito M et al. Influence of age on ocular wavefront aberration changes with accommodation. J Refract Surg 2008; 24 (7): 696–701.
58. Radhakrishnan H, Charman WN. Age-related changes in ocular aberrations with accommodation. J Vis 2007; 7 (7): 111–121.
59. Lee J, Kim MJ, Tchah H. Higher-order aberrations induced by nuclear cataract. J Cataract Refract Surg 2008; 34 (12): 2104–2109.
60. Cheng AC. Wavefront-guided versus wavefront-optimized treatment. J Cataract Refract Surg 2008; 34 (8): 1229–1230.
61. Padmanabhan P, Mrochen M, Basuthkar S et al. Wavefront-guided versus wavefrontoptimized laser in situ keratomileusis: Contralateral comparative study. J Cataract Refract Surg 2008; 34 (3): 389–397.
62. Brint SF. Higher order aberrations after LASIK for myopia with alcon and wavelight lasers: A prospective randomized trial. J Refract Surg 2005; 21 (6): S799–S803.
63. Seiple W, Szlyk JP. Clinical Investigation into the Visual performance provided by the i-Zon Spectacle Lens System. Rev Optom 2008; 2 (Suppl): 1–16.
64. Thibos LN, Bradley A. Use of liquid-crystal adaptive-optics to alter the refractive state of the eye. Optom Vis Sci 1997; 74 (7): 581–587.
65. Knoll HA, Conway HD. Analysis of blink-induced vertical motion of contact lenses. Am J Optom Physiol Opt 1987; 64 (2): 153–155.
66. Porter J, Guirao A, Cox IG et al. Monochromatic aberrations of the human eye in a large population. J Opt Soc Am A Opt Image Sci Vis 2001; 18 (8): 1793–1803.
67. Guirao A, Williams DR, Cox IG. Effect of rotation and translation on the expected benefit of an ideal method to correct the eye’s higher-order aberrations. J Opt Soc Am A Opt Image Sci Vis 2001; 18 (5): 1003–1015.
68. Barbero S, Marcos S, Jimenez-Alfaro I. Optical aberrations of intraocular lenses measured in vivo and in vitro. J Opt Soc Am A Opt Image Sci Vis 2003; 20 (10): 1841–1851.
69. Atchison DA. Optical design of poly (methyl methacrylate) Intraocular lenses. J Cataract Refract Surg 1990; 16 (2): 178–187.
70. Mester U, Dillinger P, Anterist N. Impact of a modified optic design on visual function: Clinical comparative study. J Cataract Refract Surg 2003; 29 (4): 652–660.
================================
Nhận xét
Đăng nhận xét