ĐỒ ÁN KỸ THUẬT
TÌM HIỂU VỀ CÔNG NGHỆ QUANG SOLITON
LỜI MỞ ĐẦU
Trong những năm gần đây, công nghệ truyền thông quang đã có những bước tiến vững chắc, được minh họa bởi nhu cầu ngày càng tăng của các dịch vụ. Các nhà nghiên cứu thiết kế hệ thống quang và mạng nhận thấy bản thân chúng là nhu cầu trường tồn để làm tăng thêm dung lượng và truyền thông đường dài. Tất nhiên có một sự cạnh tranh mạnh mẽ giữa hệ thống tuyến tính và phi tuyến.
Lớp các hệ thống truyền dẫn tuyến tính NRZ-IM/DD kết hợp với công nghệ WDM bao trùm trên một diện rộng các ứng dụng, bao gồm các khoảng cách truyền dẫn lên đến 10000km, và các tốc độ lên đến 100Gb/s. Những hệ thống này hiện tại hoạt động phổ biến, nhưng nói chung bị hạn chế đến tốc độ 2,5-5 Gb/s mỗi kênh trong các truyền dẫn đường dài.
Một số lượng lớn các sóng mang quang sau đó có thể được yêu cầu để tạo ra tốc độ 100Gb/s. Mặt khác các hệ thống phi tuyến RZ, tức là các hệ thống soliton được khuyếch đại đã đạt đến độ chín có thể xem xét, chính vì thế là một sự lựa chọn đúng đắn đối với truyền thông dung lượng cao. Trong truyền thông đường dài mỗi kênh hệ thống RZ phi tuyến có thể hỗ trợ các tốc độ lên đến 10Gb/s.
Mặc dù đang có mặt các công nghệ hoàn hảo các hệ thống soliton được khuyếch đại vẫn chưa được triển khai phổ biến. Lý do chính là trong đó các soliton chịu ảnh hưởng Gordon-Haus khắt khe, kết quả từ sự trộn lẫn tín hiệu và nhiễu sự phát xạ tự phát tự phát tạo ra bởi các bộ khuyếch đại EDFA được sử dụng để bù suy hao sợi quang. Sự trộn lẫn tín hiệu và nhiễu tạo ra một sự jitter trên các độ rộng xung, chính vì thế hạn chế dung lượng các soliton được khuyếch đại.
CHƯƠNG I: TỔNG QUAN VÊ SOLITON
1.1 Khái niệm về soliton
Từ soliton được đưa vào năm 1965 để miêu tả thuộc tính phân tử của đường bao xung trong môi trường phi tuyến tán sắc. Dưới điều kiện nào đó đường bao xung không chỉ lan truyền không méo mà còn tồn tại sự va chạm như các phần tử làm.
Vậy soliton là thuật ngữ biễu diễn các xung lan truyền qua khoảng cách dài mà không thay đổi hình dạng xung do nó đưa ra khả năng đặc biệt để truyền các xung không nhạy cảm với tán sắc. Sự tồn tại của soliton trong sợi quang và sử dụng chúng cho truyền thông quang đã được đề nghị từ những năm 1973 và đến năm 1980 soliton đã được chứng minh bằng thực nghiệm.
Tiềm năng của soliton cho truyền dẫn quang đường dài được khẳnh định vào năm 1988 trong một thí nghiệm mà suy hao sợi được bù định bằng kỹ thuật khuyếch đại Raman. Hệ thống soliton quang mặc dù chưa được ứng dụng nhiều trong thực tế song với những tiềm năng vốn có, nó trở thành một dự tuyển đặc biệt cho hệ thống truyền dẫn quang.
1.2 Soliton sợi
Sự tồn tại của soliton sợi là kết quả của sự cân bằng giữa tán sắc vận tốc nhóm GVD (group-veocity disperson) Và tự điều chế pha SPM, cả hai đều hạn chế hiệu năng truyền thông quang sợi khi hoạt động độc lập trên xung quang đang lan truyền bên trong sợi ngoại trừ khi xung bị dịch ban đầu theo đúng hướng. Đặc biệt hơn một xung bị dịch có thể được nén trong suốt giai đoạn đầu của sự lan truyền bất cứ khi nào tham số GVD và hệ số chirp C trái dấu nhau (. C<0).
SPM, kết quả từ sự phụ thuộc của chiết suất vào cường độ quang, đưa ra một sự dịch trên xung quang sao cho C > 0. Vì <0 ở vùng bước sóng 1,55 nên điều kiện. C<0 được thõa mãn. Hơn nữa sự dịch chuyển bởi SPM phụ thuộc công suất nên không khó khăn để hiểu rằng dưới điều kiện nào đó SPM và GVD có thể kết hợp theo một cách nào đó sao cho sự dịch bởi SPM là đúng hướng để loại bỏ sự mở rộng xung do GVD gây ra.
Như vậy xung quang có thể lan truyền không méo dưới dạng của một Soliton. Đồ thị sau miêu tả sự biến thiên của hệ số mở rộng theo khoảng cách lan truyền cho một xung Gausse vào bị dịch tần. Đường nét chấm biễu diễn sự mở rộng xung trong trường hợp xung Gauss không bị dịch tần (C=0). Dựa vào đồ thị ta thấy sự mở rộng xung tăng khi khoảng cách lan truyền tăng.
Và khi C=-2, C. <0, xung ban đầu được nén lại (T1/T0<1) Sau đó lại mở rộng do ảnh hưởng của tán sắc. Như vậy, kết hợp cân bằng giữa GVD và SPM sẽ làm giảm sự mở rộng xung để xung quang có thể lan truyền không méo qua khoảng cách dài.
1.3 Phương trình Schorodinger phi tuyến
Sự miêu tả toán học cơ bản của các soliton sợi yêu cầu giải hàm sóng trong môi trường phi tuyến tán sắc. Hàm sóng này được suy ra từ phương trình Maxell và được thõa mãn bởi đường bao xung biến đổi chậm A (z, t) Trong đó sự có mặt của cả GVD và hiệu ứng phi tuyến sợi.
------------------------------------
MỤC LỤC
LỜI MỞ ĐẦU
CHƯƠNG I: TỔNG QUAN VÊ SOLITON
1.1 Khái niệm về soliton
1.2 Soliton sợi
1.3 Phương trình Schorodinger phi tuyến
1.4 Phân loại Soliton
1.4.1 Soliton cơ bản và soliton bậc cao
1.4.2 Tiến trình soliton
1.4.3 Soliton tối (Dark soliton)
CHƯƠNG II: HỆ THỐNG TRUYỀN DẪN SOLITON
2.1 Hệ thống truyền dẫn soliton
2.1.1 Mô hình hệ thống chung
2.1.2 Truyền thông tin với các soliton
2.1.3 Tương tác soliton
2.1.4 Sự lệch tần (frequency chirp)
2.1.5 Máy phát soliton
2.1.6 Ảnh hưởng của suy hao sợi
2.1.7 Khuyếch đại soliton
2.2 Các soliton được quản lý tán sắc
2.2.1 Các sợi giảm tán sắc
2.2.2 Tiến trình thực nghiệm
CHƯƠNG III: HỆ THỐNG WDM SOLITON
3.1 Các xung đột xuyên kênh
3.2 Jitter trong hệ thống WDM Soliton
3.2.1 Khái niệm jitter timing
3.2.2 Jitter timing trong soliton ghép kênh theo bước sóng
3.2.3 Jitter timing trong các hệ thống soliton đa kênh
3.2.4 Jitter timing trong các hệ thống được quản lý tán sắc
3.3 Các kết luận
KẾT LUẬN CHUNG
THUẬT NGỮ VIẾT TẮT
TÀI LIỆU THAM KHẢO
MỤC LỤC
------------------------------------------------
keyword: download,do an ky thuat,tim hieu,ve cong nghe quang,soliton
Nhận xét
Đăng nhận xét