ELIAS GREENBAUM- OAK RIDGE NATIONAL LABORATORY – SPRINGER 2005
BIOLOGICAL AND MEDICAL PHYSICS, BIOMEDICAL ENGINEERING
Contents
1 Elements of the Description
1.1 Sound
1.1.1 AMetaphor
1.1.2 Getting Serious
1.1.3 SoundasaPhysicalPhenomenon
1.1.4 SoundWaves
1.1.5 DetectingSound
1.2 Frequencyandamplitude
1.2.1 PeriodicSignalsvs. Noise
1.2.2 IntensityofSound
1.3 Harmonics and Superposition
1.3.1 Beyond Frequency and Amplitude: Timbre
1.3.2 AddingupWaves
1.4 Sonograms
1.4.1 Onomatopoeias
1.4.2 Building a Sonogram
2 Sources and Filters
2.1 SourcesofSound
2.1.1 Flow, Air Density and Pressure
2.1.2 Mechanisms forGeneratingSound
2.2 Filters and Resonances
2.2.1 Same Source, Different Sounds
2.2.2 Traveling Waves
2.2.3 Resonances
2.2.4 Modes and Natural Frequencies
2.2.5 Standing Waves
2.3 Filtering a Signal
2.3.1 Conceptual Filtering
2.3.2 Actual Filtering
2.3.3 TheEmissionfromaTube
3 Anatomy of the Vocal Organ
3.1 MorphologyandFunction
3.1.1 GeneralMechanismofSoundProduction
3.1.2 MorphologicalDiversity
3.1.3 TheRichnessofBirdsong
3.2 TheoscineSyrinx
3.2.1 TheSourceofSound
3.2.2 TheRoleof theMuscles
3.2.3 Vocal Learners and Intrinsic Musculature
3.3 TheNonoscineSyrinx
3.3.1 TheExampleof thePigeons
3.4 Respiration
4 The Sources of Sound in Birdsong
4.1 Linear Oscillators
4.1.1 ASpringandaSwing
4.1.2 Energy Losses
4.2 Nonlinear Oscillators
4.2.1 Bounding Motions
4.2.2 An Additional Dissipation
4.2.3 Nonlinear Forces and Nonlinear Oscillators
4.3 Oscillations in the Syrinx
4.3.1 ForcesactingontheLabia
4.3.2 Self-Sustained Oscillations
4.3.3 Controlling the Oscillations
4.4 Filtering the Signal
5 The Instructions for the Syrinx
5.1 TheStructureofaSong
5.1.1 Syllables
5.1.2 Bifurcations
5.2 The Construction of Syllables
5.2.1 CyclicGestures
5.2.2 Paths inParameterSpace
5.3 The Active Control of the Airflow: A Prediction
5.4 Experimental Support
5.5 Lateralization
6 Complex Oscillations
6.1 Complex Sounds
6.1.1 Instructions vs. Mechanics
6.1.2 Subharmonics
6.2 AcousticFeedback
6.2.1 Source–Filter Separation
6.2.2 ATime-DelayedSystem
6.2.3 Coupling Between Source and Vocal Tract
6.3 LabiawithStructure
6.3.1 TheRoleof theDynamics
6.3.2 TheTwo-MassModel
6.3.3 Asymmetries
6.4 ChoosingBetweenTwoModels
6.4.1 Signatures of Interaction Between Sources
6.4.2 Modeling Two Acoustically Interacting Sources
6.4.3 Interact, Don’t Interact
7 Synthesizing Birdsong
7.1 Numerical IntegrationandSound
7.1.1 Euler’sMethod
7.1.2 Runge–KuttaMethods
7.1.3 ListeningtoNumericalSolutions
7.2 Analogintegration
7.2.1 Operational Amplifiers: Adding and Integrating
7.2.2 An Electronic Syrinx
7.3 PlaybackExperiments
7.4 WhyNumericalWork?
7.4.1 Definition of Impedance
7.4.2 ImpedanceofaPipe
8 From the Syrinx to the Brain
8.1 TheMotorPathway
8.2 TheAFPPathway
8.3 Models for theMotorPathway: What for?
8.3.1 Building Blocks for Modeling Brain Activity
8.4 Conceptual Models and Computational Models
8.4.1 Simulating the Activity of HVC Neurons
8.4.2 Simulating the Activity of RA Neurons
8.4.3 Qualitative Predictions
8.5 Sensorimotor Control of Singing
8.6 ComputationalModelsandLearning
8.7 RateModels
8.8 Lights and Shadows of Modeling Brain Activity
9 Complex Rhythms
9.1 Linear vs. Nonlinear Forced Oscillators
9.2 Duets
9.2.1 HorneroDuets
9.2.2 A Devil’s Staircase
9.2.3 TestDuets
9.3 Nonlinear Dynamics
9.3.1 A Toy Nonlinear Oscillator
9.3.2 PeriodicForcing
9.3.3 Stable Periodic Solutions
9.3.4 Locking Organization
9.4 Respiration
9.4.1 Periodic Stimulation for Respiratory Patterns
9.4.2 AModel
9.5 BodyandBrain
References
1.
[Abarbanel et al. 2002] Abarbanel H. D. I., Huerta R. And Rabinovich M.
I. Dy- namical model of long-term synaptic plasticity. Proc. Natl.
Acad. Sci. USA, 10132–10137 (2002).
2.
[Abarbanel et al. 2004a] Abarbanel H. D. I. A., Gibb L., Mindlin G. B.
And Ta- lathi S. Mapping neural architectures onto acoustic features of
birdsong. J. Neurophysiol., 000–000 (2004)
3.
[Abarbanel et al. 2004b] Abarbanel H. D. I., Gibb L., Mindlin G. B.,
RabinovichM. I. And Talathi S. Spike timing and synaptic plasticity in
the premotor pathway of birdsong. Biol. Cybern., 1–9 (2004).
4.
[Aliaga et al. 2003] Aliaga J., Busca N., Minces V., Mindlin G. B.,
Pando B., Salles A. And Szczupak L. Electronic neuron within a ganglion
of a leech (Hirudo medicinalis) Phys. Rev. E., 061915 (2003).
5.
[Allan and Suthers 1994] Allan S. E. And Suthers R. A. Lateralization
and motor stereotypy of song production in the brown headed cowbird. J.
Neurobiol., 1154–1166 (1994).
6.
[Alvarez-Buylla and Nottebohm 1988] Alvarez-Buylla A. And Nottebohm F.
Mi- gration of young neurons in adult avian brain. Nature, 353–354
(1988).
7. [Amador 2004] Amador A. Ph. D. Thesis, Physics Department, UBA, in prepara- tion.
8.
[American Heritage Dictionary 2000] American Heritage Dictionary of the
English Language, Houghton Mifflin, Boston 4th Edition (2000).
9.
[Arnold et al. 1999] Arnold V. I., Afrajmovich V. S., Ilyashenko Yu. S.
And Shilnikov L. P. Bifurcation Theory and Catastrophe Theory.
Springer, Berlin, Heidelberg (1999).
10.
[Aubier et al. 2000] Aubier T., Jouventin P. And Hildebrand C. Penguins
use the two voice system to recognize each other. Proc. R. Soc. London
(Biol.), 1081–1087 (2000).
11.
[Ballintijn and ten Cate 1998] M. R. Ballintijn and C. Ten Cate. Sound
production in the collared dove: A test of the whistle hypothesis. J.
Exp. Biol., 1637– 1649.
12.
[Beckers et al. 2003a] Beckers G. J. L., Suthers R. And ten Cate C.
Pure tone bird- song by resonance filtering of harmonic overtones. Proc.
Natl. Acad. Sci. USA, 7372–7376 (2003).
13.
[Beckers et al. 2003b] Beckers G. J. L., Suthers R. And ten Cate C.
Mechanisms of frequency and amplitude modulation in the ring dove song.
J. Exp. Biol. (11), 1833–1843 (2003).
14.
[Bottjer 2002] Bottjer S. Neural strategies for learning during
sensitive periods of development. J. Comp. Physiol. A, 917–928 (2002).
152 References
15.
[Bottjer et al. 1984] Bottjer S., Miesner E. A., Arnold A. P. Forebrain
lesions dis- rupt development but not maintenance of song in passerine
birds. Science, 901–903 (1984).
16. [Brainard and Doupe 2000] Brainard M. And Doupe A. What birdsong teaches us about learning? Nature, 351–358 (2002).
17.
[Burd and Nottebohm 1985] Burd G. D. And Nottebohm F. Ultrastructural
char- acterization of synaptic terminals formed on newly generated
neurons in a song control nucleus of the adult canary forebrain. J.
Comp. Neurol., 143–152 (1985).
18.
[Calder 1970] Calder W. A. Respiration during song in the canary
(Serinus ca- naria). Comp. Biochem. Physiol., 251–258 (1970).
19. [Casey and Gaunt 1985] Casey R. M. And Gaunt A. S. Theoretical models of the avian syrinx. J. Theor. Biol., 45–64 (1985).
20.
[Catchpole and Slater 1995] Catchpole C. K. And Slater P. J. B.
Birdsong: Biolog- ical Themes and Variations. Cambridge University
Press, Cambridge (1995).
21.
[Chi and Margoliash 2001] Chi Z. And Margoliash D. Temporal precision
and tem- poral drift in brain and behavior of zebra finch song. Neuron,
899–910 (2001).
22.
[Chiel and Beer 1997] Chiel H. And Beer R. D. The brain has a body:
Adaptive behavior emerges from interactions of nervous system, body and
environment. Trends Neurosci., 553–557 (1997).
23.
[Doupe and Kuhl 1999] Doupe A. J. And Kuhl P. K. Birdsong and human
language: Common themes and variations. Annu. Rev. Neurosci., 567–631
(1999)
24.
[Doya and Sejnowski 1995] Doya K. And Sejnowski T. J. A novel
reinforcement model for birdsong vocalization learning. In Advances in
Neural Information Processing Systems, ed. By Tesaura G., Touretzky, D.
S. And Leen, T. K., vol 7. MIT Press, Cambridge, MA (1995), pp. 101–108.
25. [Elemans 2004] Elemans C. How Do Birds Sing? Ph. D. Thesis Leide University, The Netherlands (2004).
26.
[Elemans et al. 2003] Elemans C. P. H., Larsen O. N., Hoffmann M. R. And
Leeuwen J. L. Quantitative modeling of the biomechanics of the avian
syrinx. Animal Biol., 183–193 (2003).
27.
[Elemans et al. 2004] Elemans C. P. H., Spierts I. L. Y., Muller U. K.,
Van Leeuwen J. L. And Goller F. Superfast muscles control dove’s trill.
Nature, 146 (2004).
28.
[Fee 2002] Fee M. S. Measurement of the linear and nonlinear mechanical
properties of the oscine syrinx: Implication for function. J. Comp.
Physiol. A, 829–839 (2002).
29.
[Fee et al. 1998] Fee M. S., Shraiman B., Pesaran B. And Mitra P. P.
The role of nonlinear dynamics of the syrinx in the vocalizations of a
songbird. Nature, 67–71 (1998).
30.
[Fee et al. 2004] Fee M. S., Kozhevnikov A. A. And Hahnloser R. H. R.
Neural mechanisms of vocal sequence generation in the songbird. Ann. N.
Y. Acad. Sci., 153–170 (2004).
31.
[Feingold et al. 1988] Feingold M., Gonzalez D., Piro O. And Viturro H.
Phase lock- ing, period doubling and chaotic phenomena in externally
driven excitable sys- tems. Phys. Rev. A, 4060–4063 (1988).
32.
[Feynman et al. 1970] Feynman R., Leighton R. And Sands M. The Feynman
Lec- tures Notes on Physics. Addison Wesley Reading, MA (1970).
References 153
33.
[Fiete et al. 2004] Fiete I. R., Hanslosser R. H. R., Fee M. S. And
Seung H. S. Temporal sparseness of the premotor drive is important for
rapid learning in a neural network model of birdsong. J. Neurophysiol.,
2274–2282 (2004).
34. [Fletcher 1988] Fletcher N. H. Birdsong: A quantitative acoustic model. J. Theor. Biol., 455–481 (1988).
35. [Fletcher 2000] Fletcher N. H. A class of chaotic calls. J. Acoust. Soc. Am., 821–826 (2000).
36.
[Fletcher and Tarnopolsky 1999] Fletcher N. H. And Tarnopolsky A.
Acoustics of the avian vocal tract. J. Acoust. Soc. Am., 35–49 (1999).
37.
[Fletcher et al. 2004] Fletcher N. H., Riede T., Beckers G. J. L. And
Suthers R. Vocal tract filtering of the ‘coo’ of doves. Preprint (2005).
38.
[Gardner et al. 2001] Gardner T., Cecchi G., Magnasco M., Laje R. And
Mindlin G. B. Simple motor gestures for birdsongs. Phys. Rev. Lett.,
Art. 2008101,1–4 (2001).
39.
[Gaunt 1983] Gaunt A. S. An hypothesis concerning the relationship of
syringeal structure to vocal abilities. The Auk, 853–862 (1983).
40.
[Gaunt et al. 1982] Gaunt A. S., Gaunt S. L. L. And Casey R. Syringeal
mechanisms reassessed: Evidence from streptopelia. The Auk, 474–494
(1982).
41. [Glass 2001] Glass L. Synchronization and rhythmic processes in physiology. Nature, 277–284 (2001).
42.
[Glass and Mackey 1988] Glass L. And Mackey M. C. From Clocks to Chaos:
The RhythmsofLife. Princeton University Press, Princeton (1988).
43. [Goller 1998] Goller F. Vocal gymnastics and the bird brain. Nature, 11–12 (1998).
44.
[Goller and Larsen 1997a] Goller F. And Larsen O. N. A new mechanism of
sound generation in songbirds. Proc. Natl. Acad. Sci. USA, 14787–14791
(1997).
45.
[Goller and Larsen 1997b] Goller F. And Larsen O. N. In situ
biomechanics of the syrinx and sound generation in pigeons. J. Exp.
Biol., 2165–2176 (1997).
46.
[Goller and Larsen 2002] Goller F. And Larsen O. N. New perspectives on
mecha- nisms of sound generation in songbirds. J. Comp. Physiol. A, 841
(2002).
47.
[Goller and Suthers 1995] Goller F. And Suthers R. A. Implications for
lateraliza- tion of birdsong from unilateral gating of bilateral motor
patterns. Nature, 63–66 (1995).
48.
[Goller and Suthers 1996a] Goller F. And Suthers R. A. Role of
syringeal muscles in gating airflow and sound production in singing brown
thrashers. J. Neuro- physiol., 867–876 (1996).
49.
[Goller and Suthers 1996b] Goller F. And Suthers R. A. Role of
syringeal muscles in controlling the phonology of bird song. J.
Neurophysiol., 287–300 (1996).
50.
[Goller and Suthers 1999] Goller F. And Suthers R. A. (1999).
Bilaterally symmet- rical respiratory activity during lateralized
birdsong. J. Neurobiol., 513–523 (1999).
51.
[Gonz´ alez and Piro 1983] Gonz´ alez D. L. And Piro O. Chaos in a
nonlinear driven oscillator with exact solution. Phys. Rev. Lett.,
870–872 (1983).
52. [Greenwalt 1968] Greenwalt C. H. Birdsong: Acoustic and Physiology. Smithsonian Institute Press, Washington, DC (1968).
53.
[Hahnloser et al. 2002] Hahnloser R. H. R., Kozhevnikov A. A. And Fee
M. S. An ultra-sparse code underlies the generation of neural sequences
in a songbird. Nature, 65–70 (2002).
54.
[Hartley 1990] Hartley R. S. Expiratory muscle activity during song
production in the canary. Respir. Physiol., 177–188 (1990). 154
References
55.
[Hartley and Suthers 1989] Hartley R. S. And Suthers R. A. Airflow and
pressure during canary song: Evidence for mini-breaths. J. Comp.
Physiol., 15–26 (1989).
56.
[Herrman and Arnold 1991] Herrmann K. And Arnold A. P. The development
of afferent projections to the robust archistriatal nucleus in male zebra
finches: A quantitative electron microscopic study. J. Neurosci.,
2063–2074 (1991).
57.
[Herzel et al. 1995] Herzel H., Berry D. A., Titze I. R. And Steinecke
I. Nonlinear dynamics of the voice: Signal analysis and biomechanical
modeling. Chaos, 30–34 (1995).
58.
[Herzel et al. 1996] Herzel H. (1996). Possible mechanisms for voice
instabilities, in Vocal Fold Physiology, ed. By Davis P. J. And Fletcher
N. H. Singular Publishing Group, San Diego (1996), pp. 63–75.
59. [Hildebrand 1995] Hildebrand M. Analysis of Vertebrate Structure. Wiley, New York (1995).
60.
[Hodgkin and Huxley 1952] Hodgkin A. L. And Huxley A. F. The components
of membrane conductance in the giant axon of Loligo. J. Physiol.,
473–496 (1952).
61.
[Hoese et al. 2003] Hoese W. J., Podos J., Boetticher N. C. And Nowicki
S. Vo- cal tract function in birdsong production: Experimental
manipulation of beak movements. J. Exp. Biol. (11): 1833–1843 (2003).
62.
[Hoppensteadt and Izhikevich 1997] Hoppensteadt F. And Izhikevich E. M.
Weakly Connected Neural Networks, Applied Mathematical Series, No. 126.
Springer, New York (1997).
63.
[Ishizaka et al. 1972] Ishizaka K. And Flanagan J. L. (1972). Synthesis
of voiced sounds from a two-mass model of the vocal chords. Bell. Syst.
Tech. J., 1233–1268 (1972).
64.
[Izhikevich 2005] Izhikevich E. M. Dynamical Systems in Neuroscience:
The Geom- etry of Excitability and Bursting, in preparation (2005).
65. [Keener and Sneyd 1998] Keener J. And Sneyd J. Mathematical Physiology. Springer, New York (1998).
66.
[Kimpo et al. 2003] Kimpo R. R., Theunissen F. E. And Doupe A.
Propagation of correlated activity through multiple stages of a neural
circuit. J. Neurosci., 5750–5761 (2003).
67.
[Kinsler et al. 1982] Kinsler L., Frey A. R., Coppens A. B. And Sanders
J. V. Fun- damentals of Acoustics. Wiley, New York (1982).
68.
[Kittel et al. 1965] Kittel C., Knight W. D. And Ruderman M. A.
Mechanics, The Berkeley Physics Course I. McGraw-Hill, New York (1965).
69.
[Koch 1999] Koch C. Biophysics of Computation: Information Processing
in Single Neurons. Oxford University Press, New York (1999).
70.
[Konishi 1965] Konishi M. The role of auditory feedback in the control
of vocaliza- tion in the white crowned sparrow. Z. Tierpsychol., 770–783
(1965).
71.
[Konishi 1994] Konishi M. An outline of recent advances in birdsong
neurobiology. Brain Behav. Evolut. (4–5), 279–285 (1994).
72.
[Kroodsma and Konishi 1991] Kroodsma D. E. And Konishi M. A suboscine
bird (eastern phoebe, Sayonrnis phoebe) Develops normal song without
auditory feedback. Anim. Behav., 477–487 (1991).
73.
[Laje et al. 2002] Laje R., Gardner T. J. And Mindlin G. B.
Neuromuscular control of vocalizations in birdsong: A model. Phys. Rev.
E, 051921 (2002).
74. [Laje and Mindlin 2002] Laje R. And Mindlin G. B. Diversity within birdsong. Phys. Rev. Lett., 288102 (2002). References 155
75.
[Laje and Mindlin 2003] Laje R. And Mindlin G. B. Highly structured
duets in the song of the Southamerican hornero. Phys. Rev. Lett., 258104
(2003).
76.
[Laje et al. 2001] Laje R., Gardner T. J. And Mindlin G. B. Continuous
model for vocal fold oscillations to study the effect of feedback. Phys.
Rev. E, 056201 (2001).
77. [Landau and Lifshitz 1991] Landau L. D. And Lifshitz E. M. (1991). Mecanica de fluidos. Editorial Reverte, Barcelona (1991).
78.
[Larsen and Goller 2002] Larsen O. N. And Goller F. Direct observation
of syringeal muscle function in songbirds and a parrot. J. Exp. Biol.,
25–35 (2002).
79.
[Marler 1970] Marler P. A comparative approach to vocal learning: Song
develop- ment in white-crowned sparrows. J. Comp. Physiol. Psychol.,
1–25 (1970).
80. [McCasland 1987] McCasland J. S. Neuronal control of birdsong production. J. Neurosci., 23–39 (1987).
81.
[Mende et al. 1990] Mende W., Herzel H. And Wermke K. Bifurcations and
chaos in newborn cries. Phys. Lett. A, 418–424 (1990).
82.
[Mindlin et al. 2003] Mindlin G. B., Gardner T. J., Goller F. And
Suthers R. Ex- perimental validation of a physical model for birdsong.
Phys. Rev. E, 68, art 041908 (2003).
83.
[Nordeen and Nordeen 1988] Nordeen K. W. And Nordeen E. J. Projection
neurons within a vocal motor pathway are born during song learning in
zebra finches. Nature, 149–151 (1988).
84.
[Nordeen and Nordeen 1997] Nordeen K. W. And Nordeen E. J. (1997)
Anatomical and synaptic substrates for avian song learning. J.
Neurobiol., 532–548 (1997).
85. [Nottebohm 1970] Nottebohm F. Ontogeny of birdsong. Science, 950–956 (1970).
86.
[Nottebohm 1976] Nottebohm F. Phonation in the orange-winged Amazon
parrot, Amazona amazonica. J. Comp. Physiol., 157–170 (1976).
87. [Nottebohm 2002a] Nottebohm F. Why are some neurons replaced in adult brain? J. Neurosci., 624–628 (2002).
88. [Nottebohm 2002b] Nottebohm F. Birdsong’s clockwork. Nature Neurosci., 925– 926 (2002).
89.
[Nottebohm et al. 1976] Nottebohm F., Stokes T. M. And Leonard C. M.
Central control of song in canary Serinus canarius. J. Comp. Neurol.,
457–486 (1976).
90.
[Nottebohm et al. 1986] Nottebohm F., Nottebohm M. E. And Crane, L.
Develop- mental and seasonal changes in canary song and their relation
to changes in the anatomy of song control nuclei. Behav. Neural Biol.,
445–471 (1986).
91.
[Nowicki 1987] Nowicki S. Vocal tract resonances in oscine songbird
production: Evidence from birdsongs in a helium atmosphere. Nature,
53–55 (1987).
92. [Nowicki 1997] Nowicki S. Bird acoustics. In Encyclopedia of Acoustics, ed. By Crocker M. J. Wiley, (1997), pp. 1813–1817.
93.
[Nowicki and Capranica 1986] Nowicki S. And Capranica R. R. Bilateral
syringeal interaction in vocal production of an oscine bird sound.
Science, 1297–1299 (1986).
94. [Podos 1996] Podos J. Motor constraints on vocal development in a song bird. Anim. Behav., 1061–1070 (1996)
95.
[Press et al. 1992] Press W. H., Teukolsky S. A., Vetterling W. T. And
Flannery B. P. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge University Press, New York, NY 2nd edition (1992). 156
References
96.
[Reuter et al. 1999] Reuter R., Orglmeister R. And Herzel H.
Simulations of vocal fold vibrations with an analog circuit.
International Journal of Bifurcations and Chaos, 1075–1088 (1999).
97.
[Robb 1988] Robb J. B. And Saxman J. Acoustic observations in young
children’s vocalizations. J. Acoust. Soc. Am., 1876–1882 (1988).
98.
[Scharff and Nottebohm 1991] Scharff C. And Nottebohm F. A comparative
study of the behavioural deficits following lesions in various part of
the zebra finch song system: Implications for vocal learning. J.
Neurosci., 2896–2913 (1991).
99.
[Schuster et al. 1990] Schuster H. G. And Wagner P. A model for neural
oscillators in the visual cortex: 1. Mean-field theory and derivation of
phase equations. Biol. Cybern., 77–82 (1990).
100.
[Sigman and Mindlin 2000] Sigman M. And Mindlin B. G. Dynamics of three
cou- pled excitable cells with D3 symmetry. Int. J. Bif. Chaos,
1709–1728 (2000).
101.
[Solari et al. 1996] Solari H. G., Natiello M. And Mindlin G. B.
Nonlinear Dynam- ics: A Two Way Trip from Physics to Math. IOP, London
(1996).
102.
[Spiro et al. 1999] Spiro J. E., Dalva M. B. And Mooney R. (1999)
Long-range inhibition within the zebra finch song nucleus RA can
coordinate the firing of multiple projection neurons. J. Neurophysiol.,
3007–3020 (1999).
103.
[Stark and Perkel 1999] Stark L. L. And Perkel D. J. Two stage, input
specific synaptic maturation in a nucleus essential for vocal production
in the zebra finch. J. Neurosci., 9107–9116 (1999).
104.
[Steinecke and Herzel 1995] Steinecke I. And Herzel H. Bifurcations in
an asymmet- ric vocal fold-model. J. Acoust. Soc. Am. 1874–1884 (1995).
105. [Straneck 1990a] Straneck R. Canto de las Aves Pampeanas I, LOLA, Buenos Aires (1990).
106. [Straneck 1990b] Straneck R. Canto de las Aves Misioneras I, LOLA, Buenos Aires (1990).
107. [Straneck 1990c] Straneck R., Canto de las Aves Misioneras II, LOLA, Buenos Aires (1990).
108.
[Sturdy et al. 2003] Sturdy C. B., Wild J. M. And Mooney R. Respiratory
and telencephalic modulation of vocal motor neurons in the zebra finch.
J. Neurosci., 1072–1086 (2003).
109.
[Suthers 1990] Suthers R. Contributions to birdsong from the left and
right sides of the intact syrinx. Nature, 473–477 (1990).
110.
[Suthers 1994] Suthers R. A. Variable asymmetry and resonance in the
avian vo- cal tract: A structural basis for individually distinct
vocalizations. J. Comp. Physiol. A, 457–466 (1994).
111.
[Suthers 2001] Suthers R. A. Peripheral vocal mechanisms in birds: Are
songbirds special? Netherlands J. Zool., 217–242 (2001).
112. [Suthers 2004] Suthers R. A. The vocal apparatus. Ann. N. Y. Acad. Sci. 109–129 (2004).
113. [Suthers and Margoliash 2002] Suthers R. A. And Margoliash D. Curr. Opin. Neu- robiol., 684–690 (2002).
114.
[Suthers and Zuo 1991] Suthers R. A. And Zuo M. X. A test of the
aerodynamics whistle hypothesis. Soc. Neurosci. Abstr., 1050 (1991).
115.
[Suthers et al. 1999] Suthers R. A., Goller F. And Pytte C. The
neuromuscular control of birdsong. Phil. Trans. R. Soc. London B,
927–939 (1999).
116.
[Suthers et al. 2002] Suthers R. A., Goller F. And Wild M. J.
Somatosensory feed- back modulates respiratory motor program of
crystallized birdsong. Proc. Natl. Acad. Sci USA 99: 5680–5685 (2002).
References 157
117.
[Szucs et al. 2000] Szucs A., Verona P., Volkovskii A. R., Abarbanel H.
D. I. A., Rabinovich M. And Selverston A. I. Interacting biological and
electronic neurons generate realistic oscillatory rhythms. Comp.
Neurosci. Neuro. Rep., art. Number 9278 (2000).
118.
[Tchernikovski et al. 2001] Tchernikovski O., Mitra P. P., Lints T. And
Nottebohm F. Dynamics of the vocal imitation process: How a zebra finch
learns its song. Science, 2564–2569 (2001).
119. [Thorpe 1961] Thorpe W. H. Bird-Song. Cambridge University Press, Cambridge (1961).
120.
[Titze 1988] Titze I. R. The physics of small-amplitude oscillation of
the vocal folds. J. Acoust. Soc. Am., 1536–1550 (1988).
121. [Titze 1994] Titze I. R. Principles of Voice Production. Prentice Hall, Englewood Cliffs, NJ (1994).
122.
[Trevisan et al. 2005] Trevisan M., Mindlin G. B. And Goller F. A
nonlinear model for diverse respiratory patterns of birdsong. Preprint
(2005).
123.
[Troyer and Doupe 2000a] Troyer T. W. And Doupe A. J. An associational
model of birdsong sensory motor learning I. Efference copy and the
learning of song syllables. J. Neurophysiol., 1204–1223 (2000).
124.
[Troyer and Doupe 2000b] Troyer T. And Doupe A. J. An associational
model of birdsong sensorymotor learning II. Temporal hierarchies and the
learning of song sequence. J. Neurophysiol., 1224–1239 (2000).
125.
[Vicario 1991] Vicario D. Contributions of syringeal muscles to
respiration and vo- calization in the zebra finch. J. Neurobiol., 63–73
(1991).
126.
[Wild 1993] Wild J. M. Descending projections of the songbird nucleus
robustus archistriatalis. J. Comp. Neurol., 225–241 (1993).
127. [Wild 1997] Wild J. M. Neural pathways for the control of birdsong production. J. Neurobiol., 653–670 (1997).
128. [Wild 2004] Wild J. M. Functional neuroanatomy of the sensorimotor control of singing. Ann. N. Y. Acad. Sci., 1–25 (2004).
129.
[Wild et al. 1998] Wild J. M., Goller F. Suthers R. A. Inspiratory
muscle activity during birdsong. J. Neurobiol., 441–453 (1998).
130.
[Wilden et al. 1998] Wilden I., Herzel H., Peters G. And Tembock G.
Subharmon- ics, biphonation and deterministic chaos in mammal
vocalization. Bioacoustics, 1–30 (1998).
131.
[Yu and Margoliash 1996] Yu A. C. And Margoliash D. Temporal
hierarchical con- trol of singing in birds. Science, 1871–1875 (1996).
132.
[Zollinger and Suthers 2004] Zollinger S. A. And Suthers R. A. Motor
mechanisms of a vocal mimic: Implications for birdsong production. Proc.
R. Soc. London B, 483–491 (2004).
Nhận xét
Đăng nhận xét